林岩

发布者:envadmin发布时间:2021-04-06浏览次数:11770

姓 名:林岩

职称职务:教授

邮 箱:yan.lin@nankai.edu.cn

研究领域:污染物迁移转化模型,环境地球化学,国际环境公约

  林岩,bat365官网登录入口教授,入选国家级青年人才项目,及南开大学百名青年学科带头人培养计划。本人研究领域包括污染物环境迁移模拟及生态风险评估,国际环境公约履约技术支持。主要研究领域为使用流域污染物传输模型(机理模型和统计模型)对塑料垃圾,有机污染物以及营养盐等在流域尺度范围内的迁移传输进行模拟。同时,本人还对水俣公约,斯德哥尔摩公约以及塑料公约等国际环境公约的谈判和履约提供技术支持。本人研究成果发表在包括Nature Geoscience,Nature Food,PNAS, Environmental Science & Technology,National Science Review, Water Research等国际知名期刊。研究成果获得参考消息等新闻媒体报道。

工作经历

教授    2020至今    bat365官网登录入口

研究员    2011-2023    挪威水研究所 (NIVA),奥斯陆,挪威

教育背景

博士    2007-2011    分析与环境化学,奥斯陆大学,挪威

硕士    2004-2006    环境工程,清华大学

学士    2000-2004    环境工程,清华大学

科研项目

典型区域土壤—地下水系统多场耦合水质演化与污染机制子课题

资助方:科技部重点研发计划

环境生物地球化学过程模拟

资助方:自然科学基金

SINOPLAST (中挪关于减少塑料污染的双边合作项目)

Capacity Building for Reducing Plastic & Microplastic Pollution

资助方:挪威外交部

SINOCHEM (中挪双边危险化学品合作项目)

Sino-Norwegian Cooperation Program on Hazardous Chemicals

资助方:挪威外交部

学术论著

近年代表论文

1.Chen et al., 2024. Pathways to zero plastic waste in Chinese cities: Implications of different disposal options under the zero waste cities policy. Journal of Cleaner Production. doi.org/10.1016/j.jclepro.2024.142747.

2.Ma et al., 2024. Rivers of Plastic: A socio-economic and topographic approach to modeling plastic transport from catchment to sea. Environmental Pollution. doi.org/10.1016/j.envpol.2024.124314.

3.Gao et al., 2024. Controlling Phosphorus Transport in Poyang Lake Basin under the Constraints of Climate Change and Crop Yield Increase. Water. doi.org/10.3390/w16020295.

4.Tang et al., 2024. A hidden demethylation pathway removes mercury from rice plants and mitigates mercury flux to food chains. Nature Food. doi.org/10.1038/s43016-023-00910-x

5.Ning et al., 2024. Bioaccumulation, biomagnification, and ecological risk of trace metals in the ecosystem around oilfield production area: A case study in Shengli Oilfield. Environmental Monitoring and Assessment. doi.org/10.1007/s10661-023-12251-0

6.Wang et al., 2022. Riverine flux of dissolved phosphorus to the coastal sea may be overestimated, especially in estuaries of gated rivers: Implications of phosphorus adsorption/desorption on suspended sediments. Chemosphere. doi.org/10.1016/j.chemosphere.2021.132206.

7.Clayer et al., 2024. Modelling plastic fluxes with INCA-macroplastics in the Imus catchment: impacts of long-term accumulation and extreme events. Environmental Research Letters. doi.org/10.1088/1748-9326/ad163f

8.Tong et al., 2022. Exploring dynamics of riverine phosphorus exports under future climate change using a process-based catchment model. Journal of Hydrology. doi.org/10.1016/j.jhydrol.2021.127344

9.Rødland E and Lin Y., 2023. Actions Are Needed to Deal with the High Uncertainties in Tire Wear Particle Analyses. Environ. Sci. Technol., doi.org/10.1021/acs.est.3c02393.

10.Zhang K, Liao L, Li Z, Lin Y.*, Meng B*, Feng X., 2023. Mercury isotopes trace historical mercury pollution from Pb–Zn smelter in China. Chemical Geology, doi.org/10.1016/j.chemgeo.2023.121622.

11.Hurley et al., 2023. Measuring riverine macroplastic: Methods, harmonisation, and quality control. Water Research, doi.org/10.1016/j.watres.2023.119902.

12.Bai M., Lin Y., Hurley R., Zhu L., Li D., 2022. Controlling Factors of Microplastic Riverine Flux and Implications for Reliable Monitoring Strategy. Environ. Sci. Technol., doi.org/10.1021/acs.est.1c04957.

13.Peng G., Lin Y., van Bavel B., Li D., Ni J. Song Y., 2022. Aggregate exposure pathways for microplastics (mpAEP): An evidence-based framework to identify research and regulatory needs. Water Research, doi.org/10.1016/j.watres.2021.117873.

14.Wang et al., 2022. Different countries need strengthen water management to improve human health. Journal of Cleaner Production, doi.org/10.1016/j.jclepro.2022.134998.

15.Shao B., Tan X., Li J., He M.*, Tian L., Chen W., Lin Y.*, 2021. Enhanced treatment of shale gas fracturing waste fluid through plant-microbial synergism. Environmental Science and Pollution Research, doi.org/10.1007/s11356-021-12830-z. 

16.Zhang Z., Ni M., He M.*, Tian L., Qin Y., Zhuang D., Cheng Y., Lin Y.*, 2021. Competition and cooperation of sulfate reducing bacteria and five other bacteria during oil production. Journal of Petroleum Science and Engineering, doi.org/10.1016/j.petrol.2021.108688.

17.Shao B., Luo J., He M., Tian L., He W., Xu Li., Zhang Z., Lin Y.*, 2020. Ecological risk assessment at the food web scale: A case study of a mercury contaminated oilfield. Chemosphere, doi.org/10.1016/j.chemosphere.2020.127599.

18.Tong Y., Wang M., Penuelas J., Liu X., Paerl H.W., Elser J.J., Sardans J., Couture R-M., Larssen T., Hu H., Dong X., He W., Zhang W., Wang X., Zhang Y., Liu Y., Zeng S., Kong X., Janssen A.B.G., Lin Y.*, 2020. Improvement in municipal wastewater treatment alters lake nitrogen to phosphorus ratios in populated regions. PNAS, doi.org/10.1073/pnas.1920759117.

19.Lin Y., Couture R.M., Klein H., Ytre-Eide M.A., Dyve J.E., Lind O.C., Bartnicki J., Nizzetto L., Butterfield D., Larssen T., Salbu B., 2019. Modelling Environmental Impacts of Cesium-137 under a Hypothetical Release of Radioactive Waste. Bulletin of Environmental Contamination and Toxicology, doi.org/10.1007/s00128-019-02601-5.

20.He M., Tian L., Braathen H. F., Wu Q., Luo J., Cai L., Lin Y.,*. 2019. Mercury–Organic Matter Interactions in Soils and Sediments: Angel or Devil?. Bulletin of Environmental Contamination and Toxicology, doi.org/10.1007/s00128-018-2523-1.

21.Xu X., Gu C., Feng X., Qiu G., Shang L.*, Xu Z., Lu Q., Xiao D., Wang H., Lin Y.*, Larssen T., 2019. Weir building: A potential cost-effective method for reducing mercury leaching from abandoned mining tailings. Science of the Total Environment, doi.org/10.1016/j.scitotenv.2018.09.150.

22.Tong Y, Li J., Qi M., Zhang X., Wang M., Liu X., Zhang W., Wang X., Lu Y., Lin Y.*, 2019. Impacts of Water Residence Time on Nitrogen Budget of Lakes and Reservoirs. Science of the Total Environment, doi.org/10.1016/j.scitotenv.2018.07.255.

23.He M., Chen W., Tian L., Shao B., Lin Y.*, 2019. Plant-microbial synergism: An effective approach for the remediation of shale-gas fracturing flowback and produced water. Journal of Hazardous Materials, doi.org/10.1016/j.jhazmat.2018.09.058.

24.Tong Y., Qiao Z., Wang X., Liu X., Chen G., Zhang W., Dong X., Yan Z., Han W., Wang R., Lin Y.*, 2018. Human activities altered water N:P ratios in the populated regions of China. Chemosphere, doi.org/10.1016/j.chemosphere.2018.07.108.

25.Wang M., Tong Y. Chen C., Liu X., Lu Y., Zhang W., He W., Wang X., Zhao S., Lin Y.*, 2018. Ecological risk assessment to marine organisms induced by heavy metals in China’s coastal waters. Marine Pollution Bulletin, doi.org/10.1016/j.marpolbul.2017.11.019.

26.Tong Y., Zhang W., Wang X., Couture R.M., Larssen T., Zhao Y., Li J., Liang H., Liu X., Bu X., He W., Zhang Q., Lin Y.*, 2017. Decline in Chinese lake phosphorus accompanied by shift in sources since 2006. Nature Geoscience, doi.org/10.1038/ngeo2967.

27.Lin Y., Wang S., Steindal E.H., Zhang H., Zhong H., Tong Y., Wang Z., Braaten H.F.V., Wu Q., Larssen T., 2017. Minamata Convention on Mercury: Chinese Progress and Perspectives. National Science Review, doi.org/10.1093/nsr/nwx031.

28.Lin Y., Wang S., Steindal E.H., Wang Z., Braaten H.F.V., Wu Q., Larssen T., 2017. A holistic perspective is needed to ensure success of Minamata Convention on mercury. Environmental Science & Technology, doi.org/10.1021/acs.est.6b06309.

29.Tong Y., Sun J., Uddin M., Kong X., Lin Y., Wang M., Zhang H., Xu W., Wu Z., 2021. Perspectives and challenges of applying the water-food-energy nexus approach to lake eutrophication modelling. Water Security, doi.org/10.1016/j.wasec.2021.100095

30.Wang S., Vogt R.D., Carstensen J., Lin Y., Feng J., Lu X., 2021. Riverine flux of dissolved phosphorus to the coastal sea may be overestimated, especially in estuaries of gated rivers: Implications of phosphorus adsorption/desorption on suspended sediments. Chemosphere, doi.org/10.1016/j.chemosphere.2021.132206

31.Sun Y.*, Lin Y., Steindal E.H., Jiang C., Yang S., Larssen T., 2021. How Can the Scope of a New Global Legally Binding Agreement on Plastic Pollution to Facilitate an Efficient Negotiation Be Clearly Defined? Environmental Science & Technology, doi.org/10.1021/acs.est.1c02033.

32.Liland A., Lind O.C., Bartnicki J., Brown J.E., Dyve J.E., Iosjpe M., Klein H., Lin Y., Simonsen M., Strand P., Thørring H., Ytre-Eide M.A., Salbu B., 2020. Using a chain of models to predict health and environmental impacts in Norway from a hypothetical nuclear accident at the Sellafield site. Journal of Environmental Radioactivity, doi.org/10.1016/j.jenvrad.2020.106159.

33.Xu X., Han J., Pang J., Wang X., Lin Y., Wang Y., Qiu G., 2020. Methylmercury and inorganic mercury in Chinese commercial rice: Implications for overestimated human exposure and health risk. Environmental Pollution, doi.org/10.1016/j.envpol.2019.113706.

34.de Wit H., Couture R.M., Jackson-Blake L., Futter M.N., Valinia S., Austnes K., Guerrero J-L., Lin Y., 2018. Pipes or chimneys? For carbon cycling in small boreal lakes, precipitation matters most. Limnology and Oceanography Letters, doi.org/10.1002/lol2.10077.

35.Sanka O., Kalina J., Lin Y., Deutscher J., Futter M., Butterfield D., Brabec K., Nizzetto L., 2018. Estimation of p,p’-DDT degradation in soil by modeling and constraining hydrological and biogeochemical controls. Environmental Pollution, doi.org/10.1016/j.envpol.2018.04.022.

36.Couture R.M., Moe J., Lin Y., Kaste Ø., Haande S., Solheim A.L., 2018. Simulating water quality and ecological status of Lake Vansjø, Norway, under land-use and climate change by linking process-oriented models with a Bayesian network. Science of The Total Environment, doi.org/10.1016/j.scitotenv.2017.11.303.

37.Zhao B., Wu W., Wang S., Xing J., Chang X., Liou K.N., Jiang J.H., Gu Y., Jang C., Fu J.S., Zhu Y., Wang J., Lin Y., Hao J., 2017. A modeling study of the nonlinear response of fine particles to air pollutant emissions in the Beijing–Tianjin–Hebei region. Atmospheric Chemistry and Physics, doi.org/10.5194/acp-17-12031-2017.

38.Tong Y., Wang M., Bu X., Guo X., Lin Y., Lin H., Li J., Zhang W., Wang X., 2017. Mercury concentrations in China's coastal waters and implications for fish consumption by vulnerable populations. Environmental Pollution, doi.org/10.1016/j.envpol.2017.08.030.

39.Xu X., Lin Y., Meng B., Feng X., Xu Z., Jiang Y., Zhong W., Hu Y., Qiu G., 2017. The impact of an abandoned mercury mine on the environment in the Xiushan region, Chongqing, southwestern China. Applied Geochemistry, doi.org/10.1016/j.apgeochem.2017.04.005.

40.Tong Y., Bu X., Chen C., Yang X., Lu Y., Liang H., Liu M., Lin H., Zhang H., Lin Y., Zhou F., Zhao S., Wu T., Mao G., Zhang W., Wang X., 2017. Impacts of sanitation improvement on reduction of nitrogen discharges entering the environment from human excreta in China. Science of the Total Environment, doi.org/10.1016/j.scitotenv.2017.03.177. 

41.Selck H., Adamsen P.B., Backhaus T., Banta G.T., Bruce P.K.H., Burton G.A., Butts M.B., Boegh E., Clague J.J., Dinh K.V., Doorn N., Gunnarsson J.S., Hauggaard-Nielsen H., Hazlerigg C., Hunka A.D., Jensen J., Lin Y., Loureiro S., Miraglia S., Munns W.R., Nadim F., Palmqvist A., Ramo R.A., Seaby L.P., Syberg K., Tangaa S.R., Thit A., Windfeld R., Zalewski M., Chapman P.M., 2017. Assessing and managing multiple risks in a changing world The Roskilde recommendations. Environmental Toxicology and Chemistry, doi.org/10.1002/etc.3513.

42.Hui M., Wu Q., Wang S., Liang S., Zhang L., Wang F., Lenzen M., Wang Y., Xu L., Lin Z., Yang H., Lin Y., Larssen T., Xu M., Hao J., 2017. Mercury flows in China and global drivers. Environmental Science & Technology, doi.org/10.1021/acs.est.6b04094.


专利

周滨; 林岩;刘红磊;邵晓龙;吕昌伟:实用新型专利,一种基于抽滤和预浓缩的水体持久性有机污染物主动式采样器。专利号:ZL 2016 2 0354159.8。